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Abstract

In this project, the main objective was to develop multiresolution wavelet algo-
rithm to study the flame acceleration and to understand the mechanism of the tran-
sition of deflagration to detonation. In the first half year of the project, The author
completed the study of two dimensional detonation waves based on hybrid high order
methods (a combination of high order Essentially Non-oscillatory (ENO) methods and
spectral methods and Shock Tracking methods). The result on the detonation waves
was published in the ATAA Journal. In the remaining time of the two years, first,
the author completed the theoretical and algorithmic studies of the adaptive wavelet
method, which could handle nonperodic boundary conditions and nonlinear time de-
pendent PDE’s (The result was published in the SIAM Journal of Numerical Analysis).
Secondly, the author implemented the adaptive wavelet methods for the solution of one-
dimensional flame propagation; thirdly, the author developed a Fortran code WL2D
(more than 13,000 lines) for the two dimensional multi-scale wavelet algorithms with
an efficient data structure and implemented a second order implicit factorized scheme
for the adaptive wavelet methods.




1 Hybrid High Order Methods for Detonation Waves

Partially supported by this grant, we completed the development of high order hybrid nu-
merical simulation of two dimensional detonation waves. The major finding of this work was
that the cellular structure of detonation waves depended very sensitively on the numerical
dissipation of the algorithms representing detonation fronts. Further studies of the work in
three dimensional cases were needed to understand the three dimensional effects of detona-
tion waves. One paper summarizing the results of this study was published in AIAA Journal,

Vol. 33, Number 3, pp 1248-1255.

2 Parallel Multi-scale Wavelet Algorithms

In an attempt to design multiscale methods for the study of deflagration to detonation tran-
sition (DDT) problem, we constructed a wavelet collocation multi-resolution algorithm for
the initial value boundary problem of nonlinear PDE’s. The key component in this colloca-
tion method was a so-called “Discrete Wavelet Transform” (DWT) which maped a solution
between the physical space and the wavelet coefficient space. The DWT transformation only
took O(NlogN) operations where N was the total number of unknowns. Therefore, the non-
linear term in the PDE could be easily treated in the physical space, and the derivatives of
those nonlinear terms then computed in the wavelet space. The wavelet collocation methods
had the following advantages: (a) the capability to handle arbitrary non-periodic boundary
conditions; (b) the capability to treat general nonlinearity through the collocations of the
PDE’s; (c) flexibility of adaptive meshing in regions where high gradients of solution occur
as in shock waves and turbulent premixed flames; (c) Capability of parallel and multi-grid
implementations .

The following paragraph summarizes the key technical details of the algorithms. One
paper containing some of the details of the results of this study was published in the Journal
of SIAM Numerical Analysis, Volume 33, Number 3, pp. 937-970, June 1996.

2.1 Discrete Wavelet Transform (DWT)

The Discrete Wavelet Transformation (DWT) maps between a function at its sample points
to the coeflicients of its wavelet interpolation expansion. This transform in both direction
will only take O(NlogN), N = 2U+V[ 4+ [ — 1 operations for the H?(I)-wavelet basis.

Let f(z) in HZ(I), and we intend to construct a wavelet interpolation

Pif(z) e Vo@Wo @ W;--- @ Wy for J >0

First introduce two index spaces, for W;, j > 0 we define

K;={-1,0,---,n; — 2} (1)
where n; = DimW; = 2/ L and for V, we define
K.y=1{-1,0,---,L -3} (2)
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Second, define the collocation points in domain I = [0, L] associated with wavelet space
W;j,j 2 0 by
N k415
20 = %— kek, (3)

and for Vg the collocation points are
=k+2, ke K_; (4)

The interpolation operator Iy, f in V5 interpolates f(z) on collocation points {x}c_l)} keX
while the interpolation operator I, f in W; interpolates any function f(z) in H3(I) on
collocation points {x}f )} kex,- The construction of the interpolant I, f and Iy, f involves the
inversion of a tridiagonal matrix with size dimW; = n; or dimVp = L — 1, respectively.

Now let us assume that the values of a function f(z) € HZ(I) are given on all the
collocation points {ij)},k € K;,—1 < j < J, then the wavelet interpolation P;f(z) €
Vo Wod Wyi---@® Wy for J > 0 is defined as

Psf(z) )+ Z fi(z ()
such that _ . v
Pofal)) = (), forkek;-1<j<J
where
fa(@) =TIy f(z) = ) f—1k¢0k z) €V
. kEK 1
and for 7 > 0,
fil) =Ly,(f9D — (Piea /YD) = ¥ fintbin( (6)
keK,
Let us denote f= (f “D £O) ... fUNT the values of f(z) on all interpolation points on
all levels, f(9) = {f(a:]C )}ke,CJ,J > —1and f = (£, £O ... fUNT the wavelet coefficients
in the expansion (5), f¥) = {f],k}ke;cj,j > —1.

A fast discrete wavelet transform (DWT) was proposed for an efficient transformation
between point values f and f with operation counts of order O(N In N) in both directions .
The efficiency of the transformation is based on the fact that d) Lk(2), Yk(z), k € K; form

a hierarchical nodal basis on all levels of collocation points {xk h=-1<j3<JkeKkK;.

2.2 Wavelet Collocation Methods for PDE’s

We consider a collocation method based on the DWT transform for time dependent PDE’s.
Let u = u(z,t) be the solution of the following initial boundary value problem

U + fo(u) = uge +g(u),z €[0,L],t >0
u(0,t) = 9o(?) (7)
Bu(Lvt) = gl(t)
Bu(z,0) = f(z)




where B is the boundary condition operator which could be either Dirichlet boundary con-
ditions or Neuman type or Robin type boundary conditions.

The numerical solution u;j(z,t) will be represented by a unique decomposition in the
cubic spline wavelet decomposition of H%(I) - Vo @ Wo @ --- @ Wy, J > 0, namely.

us(2) = T ru(z) + uor(2) + uo(e) + - + uy(e) (8)

where cubic spline I ju(z,t) consists of the nonhomogenuity of u(z,t) on both boundaries,
and the coefficients 4;4(t) are all functions of t. Using the DWT transform, we can also
identify the numerical solution u;(z,t) by its point values on all collocation points, we put
all these values in vector u = u(t), i.e.

u=u(t)=(u"u® ... oHT

where u?) = {u(:cfcj),t)},k €K, for y > —1.
To solve for the unknown solution vector u(t), we collocate the PDE (7) on all collocation
points, then we have the following semi-discretized wavelet collocation method.

Semi-Discretized Wavelet Collocation Methods

uret+ folus) = i + g(us)l, 0
Buj(0,t) = go(t) (9)
Buy(L,t) = ag(t)
us(2,0) = f(a})
where k e K; —1<j < J.
Computation of fz(:cg)) = fx(uJ(acg))

St;p 1 Given u = (ul9,u®, ... aNT  compute £ = {f(ul)}, &k € K7 = —1 and
define
f= (-1 £0O ... ,f(J))T.

bl

Step 2 Compute the wavelet interpolation expansion using DWT transform for f as in (5)

Step 3 Differentiate the interpolation expansion and evaluate at all collocation points m§j ),

which is taken as fz((xff))) = fx(uj(xff)))
- The total cost of computing the derivatives will be (5J 4+ 12)N < 5Nlog N.

2.3 Adaptive Meshing

In equations (8), us(z) is expressed using the full set of collocation points {w}cj) }. As most
of the wavelet expansion coefficients ; for large j can be ignored within a given tolerance
€. So we can dynamically adjust the number and locations of the collocation points used in
the wavelet expansions, reducing significantly the cost of the scheme while providing enough
resolution in the regions where the solution varies significantly.
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Let € > 0 be a prescribed tolerance and j > 0, £ = £(¢) = min(Z, —loge/loga),a =
13.98.
Step 1. First locate the range for the index k,

(kial;)s"'v(k;‘nl;n)?m:m(jvf) (10)_

such that
|ﬁj,klsf, k:SkSl:, i=1,---,m. ’ (11)

Step 2. Ignore ;4 in (8) for k; <k < lye =1,--- ,mk; = k] + {4+ 3,l; = l; = (=3,
namely we redefine u;(z) as

ui(z) = D, Uxpix(e)
kEICJ'\)C;»
where K = Uy cicm ki, Li]-

Step 3. The new collocation points and unknowns will be
{2}, us(z), k € Koy if j = —1;k € K;\K if j > 0.

2.4 Data Structure for Two Dimensional Adaptive Wavelet Algo-
rithms

We have developed an efficient data structure for two and three dimensional wavelet ap-
proximations. Being an adaptive scheme in nature, an efficient data structure for handling
numerical solutions in a wavelet framework is the first step in making a theoretical poten-
tial into real application. We have used sparse matrix data structure (compressed row and
compressed column vector technique) in treating the data structure on each wavelet space
W7 x WY in the case of two dimensional approximations. Such approach have the advantage
of only storing the mesh points used in the adaptive wavelet approximations and easy access
to numerical data on each constant x and y lines for the numerical differentiations.

Data Structure - 1-D
One Dimensional Case:

u = {u(_l)’u(o)’ P ,u(j)’ oo ’u(J)}

eV PWePWiP--- W,

ul) = {Ug)}lskSnJ

where n; - number of mesh points on level W;

[1] pointer(j) - pointer of first element of u(?)

[2] npts(7) - number of elements in ul) — n;

[3] indez(1 : n;) - collocation point location indices




Data Structure - 2-D

J z J y T T ..
Yjoma1 Wie X Ljyma Wiy = - WE XWE -

Jy=

Mesh on level (jz,jy) — W5 x W§
e Compressed Row Form :

i-th row:

lenrow(i, jz, jy) - length of i-th row
ipr(z,jz, 3y) - pointer of 1st mesh on i-th row
icn(:, jx, Jy) - column indices of i-th row

e Compressed column Form :

1-th column:

lencol(t, jz, jy) - length of i-th row
ipc(i, jz, Jy) - pointer of 1st mesh on i-th row
irn(:, jz, 7y) - column indices of i-th row

2.5 Fast Time Integration - Factorized ADI Wavelet Approach

On the issue of time integration, we have successfully implemented a second order implicit
factorized scheme of Beam and Warming type for the adaptive wavelet methods. Unlike many
other adaptive methods (finite element and finite difference), the adaptive wavelet methods
actually can be easily implemented using an ADI approach. So, solution of the algebraic
systems from the implicit discretization of 2-dimensional diffusion operators is replaced by
that of only 1-dimensional operators, thus speeding up the time integrations tremendously.
Example: Beam Warming schemes for Euler Equations.
Ou OF(u) 0G(u)

W_'_ Oz + Jdy =0

(I+ %EDZA“)(I + %t—DyB”)u"“

t t
=(I- %DZ,A”)(I - %—DyB”)u"

D, and D, the wavelet derivatives.




3 Computational Results of Multi-scale Wavelet Algo-
rithms for 2-D flames

We have developed a two dimensional code WL2D based on the adaptive wavelet approx-
imations. The following eight pages summarize the simulation results of two dimensional
cellular and planner flame propagations.

[1] Two Dimensional Perturbed Cellular Flame

Gt = A@—K%-*—Q
AC C,
Ct = T—K—T'—Q

where A is the Laplace Operator Initial Condition:

0 = (Cr+o(:7)
c = (1—@)+0(%)

+ perturbation of flame fronts
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[2] Two dimensional Perturbed planar flames

YO
Ct = T—Q

where A is the Laplace Operator Initial Condition:

O = exprifz<0
= lifz>0
C = 1-0
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